Contents - Previous - Next


This is the old United Nations University website. Visit the new site at http://unu.edu


Joseph Needham's contribution to the history of science and technology in China


Gregory Blue


Gregory Blue


Notes
References


One of the greatest needs of the world in our time is the growth and widespread dissemination of a true historical perspective, for without it whole peoples can make the gravest misjudgements about each other. Since science and its application dominate so much our present world, since men of every race and culture take so great a pride in man's understanding and control over her, it matters vitally to know how this modern science came into being. Was it purely a product of the genius of Europe, or did all civilizations bring their contributions to the common pool A right historical perspective here is one of the most urgent necessities of our time.1

For more than 30 years, Joseph Needham's work on the history of Chinese science and technology has been carried out as a contribution toward the detailed elaboration of just such a historical perspective. In elucidating the achievements and development of the pre-modern science, technology, and medicine indigenous to the East Asian cultural area, this contribution opened up a major field, unsuspected and untapped by most previous "orientalists" and historians of science alike. In tracing the pathways of transmission of many of these East Asian techno-scientific achievements, it has become clear that the emergence of modern science owed major debts to many influences and innovations other than those of the ancient Greek tradition. Without in any sense denigrating the decisive achievements of European scientists in the establishment of distinctively modern science, a correct historical perspective on the long-range development of science and technology might also serve as a cogent critique of positions which still portray all scientific thought as an eternal and exclusive possession of western civilization.

At a time when certain authors can continue to theorize about the "pensée-sans-science" characteristic of "such civilizations as the Chinese,"2 it may be worthwhile to enumerate the published results of Needham's studies.

It can be recalled that the first volume of his collaborative magnum opus, Science and Civilisation in China,3 appeared in 1954. Since then, a total of eight volumes have been published; two more are in press now, and a number of others are in various stages of preparation. Certain studies have been considered too detailed to be incorporated into the SCC series proper, and these have appeared either as individual articles4 or as self contained monographs dealing with such subjects as iron and steel technology5, astronomical clockwork,6 and acupuncture and moxibustion.7 Finally, various essays and addresses concerned with the general features and implications of Chinese scientific and technological history have been collected and published in a number of separate volumes.8 In short, to use Needham's own words, "experience has shown that it is comparatively easy to produce a whole series of bulky volumes about the scientific and technological achievements which the Chinese are supposed not to have had."9

The extent to which the strength and importance of science and technology in Chinese culture surpassed even Needham's expectations can be seen when one consults the list of volumes projected for SCC in Volume 1. The plan there is for seven volumes, four of them concerned exclusively with scientific and technical subjects. The amount of material pertinent to these subjects, however, has necessitated repeated revision and expansion of the original plan. The third volume nearly reached the limit of manageable size, so that it has been necessary to split the fourth and subsequent volumes into separate parts. At present six such tomes (comprising more than 3,000 pages of text) have already been published, and approximately eight more will appear, to make up the fifth and sixth volumes.

It would clearly be impossible to summarize here the contents of such a massive study,10 but perhaps an outline of the topics considered in the various volumes of SCC will not be out of place.

Volume I provides the introductory orientations for the subject. After setting forth the technical conventions used in the series as a whole and discussing some of the most important bibliographical sources, it covers the fundamental geographic characteristics of China and the basic data of her history in the pre-imperial and Imperial eras (i.e., until 1911) The final section concerns the conditions for scientific and technical interchange between China and the European, Indian, and Islamic worlds.

Volume 1I begins with a treatment of the main philosophical trends in the Chinese culture area. Of particular importance, although still quite controversial, is the section on the Taoists, whom Needham consistently portrays as proponents both of primitive democracy and of scientific and technological innovation. There follows in turn a treatment of the fundamental categories of natural philosophy (Yin and Yang; the Five Elements/ Phases) which so permeated ancient and medieval scientific thought in China. The final section of this volume, again perhaps controversial, focuses on the important question of whether the idea of "laws of nature" was to be found in traditional Chinese scientific thought; Needham answers in the negative, maintaining that the tradition recognized "order" within nature, but not "laws" governing it.

With Volume III one departs from the realm of controversial reconstruction of general intellectual trends and enters the field of documentable evidence for concrete scientific and technological achievement. The volume begins with an account of developments in mathematics. Demonstration is given of the antiquity and diffusion from China of the decimal system. It is shown that both algebra and geometry were considerably developed; and while the latter did not reach the level of systematic proof attained by the ancient Greeks, the Chinese algebrists, like their Indian peers, achieved a level of sophistication remarkable for their time. There then follow two long sections entitled, respectively, "The Sciences of the Heavens" and "The Sciences of the Earth." The first details the long traditions of thoroughgoing astronomical and meteorological investigations, which, for example, were oftentimes more than a millennium in advance of comparable studies in Europe. The second section concerns developments not only in geology, mineralogy, and seismology, but also in geography and cartography - of particular importance for world history is the fact that the Chinese tradition of grid cartography was continuous.

Physics and physical technology are dealt with in Volume IV, which has been published in three parts. Part One focuses on "pure" physics; after pointing out that Chinese physical thinking was dominated by the concept of waves rather than that of atoms, the author delves into the traditional material on hydrostatics, dynamics, optics, acoustics, electrostatics, and, finally, magnetism, perhaps the single most important legacy which the traditional Chinese scientists have passed down to the science of the modern world. Mechanical engineering is the subject of Part Two, which enumerates a myriad of "ingenious devices." After preliminary subsections on the role of the artisan and on the various simple machines used in traditional China, there follows a series of sections on complex machines, including water-raising mechanisms and early feats of aeronautical engineering. A summary of the Chinese role in the development of mechanical clockwork (long considered a strictly European phenomenon) is also provided here. The subsections on the employment of power sources cover such topics as windmills and water-mills, the development of the breaststrap harness and the later collar harness (utilization of both eventually spread across the Old World), metallurgical bellows, and lastly that element in the "prenatal history of the steam-engine," the eccentric connecting-rod and pistonrod system, first used with metallurgical bellows. Both civil and nautical engineering are treated in Part Three. Given the importance of water control in China, the section on civil engineering necessarily contains a long survey concerned with the control, construction, and maintenance of waterways; subsections on road construction, wall construction, bridge construction, and general building technology also are included. The section on nautical technology deals with vessel construction, navigation and steering techniques, and means of propulsion. The subsection on the natural history of Chinese ships culminates with a provocative disquisition on the exploits of the Ming fleet (in the fifteenth century), which sailed as far as the Straits of Madagascar in ships (burthen about 2,500 tons, displacement about 3,100 tons) equalled in Europe only several centuries later.

From Volume V, which is concerned with chemistry and chemical technology, only Parts Two and Three have been published; Parts Four and Five are now in proof. All of these deal with aspects of the alchemical tradition. This is a subject in which clear terminology is of particular importance; this is elaborated in Part Two, where the authors have coined the terms aurifiction, aurifaction, and macrobiotics: in other words, gold faking, gold making, and the preparation of elixirs for physical immortality, all three of which are necessary for a genuine alchemical tradition. Part Two goes on to elucidate the metallurgical-chemical background and to identify the many alloys which actually resulted from the alchemical processes. Part Three is a straightforward historical survey of the development of Chinese alchemy from its origin in the First Millennium and through its decline in the period after the fourteenth century. Part Four provides an analysis of the laboratory apparatus and equipment used by the alchemists, presents evidence for the position that the production of distilled liquor was first accomplished in China (although literary evidence now suggests that this distinction may fall to India), describes the successful execution of various reactions in an aqueous medium, and investigates the theoretical background of elixir alchemy. Part Four culminates in a subsection which evokes the influence of Chinese alchemy on the Hellenistic world and which demonstrates the fertility, for this field, of cultural interaction between the Islamic and Chinese worlds. Part Five explores the development of techniques utilized to induce longevity: these techniques are sorted into two categories, namely, "inner" and "outer" (corresponding roughly to the manipulation of "organic" and "inorganic" processes). The latter is described as a forerunner of modern chemistry; the former, which led to preparations of urinary steroid and protein hormones by the seventeenth century, is described as proto-biochemistry.

The remaining parts of Volume V, together with Volumes VI and VII, have not yet been completed. Since much of the material to be included is, however, in the advanced stages of preparation, it will be useful to take note of It in this outline.

The remaining parts of Volume V will, first of all, focus on mining and extraction techniques, not only of the various metals but also of salt and natural gas. There will then follow a section on ferrous and nonferrous metallurgy, Including an account of the early production of cast iron in China. Related to this will be a study of martial lore and military technology, including shock weapons, projectile weaponry, types of armour, cavalry techniques, and techniques of fortification. Here, of course, the story of the invention of gunpowder and firearms will be told. A detailed section on textiles will analyse the means of preparing various fibres, the techniques of dyeing, and the different sorts of spinning and weaving machinery; evidence will be provided for Chinese priority in the invention of the drawloom. Last, the authors will recount the important story of the invention and westward diffusion of paper and printing.

Part One of Volume Vl will deal with the wealth of traditional material on botany; among other things, it will cover the developing of classification systems, the knowledge of plant physiology, and the use of horticultural techniques such as grafting. This volume will then thoroughly examine the important zoological literature; after again beginning with an account of the development of classification systems, it will examine materials on general and comparative physiology, ideas on genetics, and the significant tradition of evolutionary thought, which was praised by Charles Darwin. The authors will then go on to a survey of the systematic traditional science of nutrition, ranging from the empirical discovery of deficiency diseases to the various techniques of preservation and preparation of foodstuffs; this section will include a comparative study of the various fermenting organisms and techniques used in China and the West. Agriculture, of course, had a tremendous significance as the economic base of traditional Chinese society, and Volume Vl will contain two long sections on agricultural industries and arts. The first of these will present the principal characteristics of Chinese agriculture, examine the cultivation of the chief food crops, and analyse traditional soil science; it also will trace the history in China of various sorts of agricultural implements, such as the plough, and will investigate the traditional use of irrigation techniques, fertilizers, and systems of crop rotation. Animal husbandry, pisciculture, and forestry also will be dealt with here. Techniques for plant protection (such as ancient insecticides and the use of biological agents) will be detailed in the section on agricultural arts, together with techniques for the production of oils, waxes, lacquers, leather, and tea.

The final sections of Volume Vl will be concerned with the traditional medical sciences and pharmacology, two areas of extraordinary achievement.

The first section will deal with anatomy, the development of techniques of dissection, and the early rise of forensic medicine, as well as with physiological and embryological conceptions. The second section will examine the traditional systems of pathology and therapy, and the principal methods of diagnosis; it will continue with an investigation of the multi-faceted accomplishments in internal and external medical treatment (for example, treatment of infectious diseases, or the early discovery by Chinese physicians of the technique of smallpox inoculation, the forerunner of the vaccination technique, which later won William Jenner such acclaim in the West). The authors will then recount the history of the theory and practice of acupuncture and moxibustion, and appraise these traditional techniques in light of the findings of present-day neuro-physiology. After showing the importance of preventive medicine in the traditional medical system, the section will end with the story of the development of medical institutions and or social medicine in general; among other things, one will find here how the state medical qualifying-examination system came westward from China. The section on pharmaceutics will then describe the use of the more important types of drugs in the great pharmacopoeias of the Imperial Era, and divergences from the materia medica of other culture areas will also be noted.

After a general summary of the chief features of Chinese science in the ancient and Imperial eras, Volume Vll will then examine the social background within which this science developed. The social importance of geographical and demographic conditions, of trade routes, and of urban concentrations will be considered first. In turn, there will be a historical survey of the evolution of social and economic relations (with a particular eye to the fiscal difficulties endemic in a large-scale agrarian empire); an analysis of the traditional class structure, with a relatively undistinguished merchant class and with the mandarinate as the normal executor of political power during the Imperial Era; and critical surveys of the views of modern commentators, Chinese and western, on the nature of traditional Chinese society. Last, there will be a relatively long evaluation of the dominant ideological tendencies and their distinct attitudes to nature and natural phenomena; conceptions of time, aspects of logic, and the significance of the ideographic script will be included here.

It should be clear from the above that what Joseph Needham and his collaborators are giving us is actually a compendium of the whole spectrum of traditional sciences and technologies in one of the world's major cultural areas.

This is undoubtedly a monumental feat in itself, but it is not intended merely to be the object of ethnographic and antiquarian interest. Needham uses the results of his research as the basis for a challenge to that particular type of chauvinism which would have us believe that scientific rationality and technical innovation can only be the prerogatives of "western civilization." In his own words,

If, as is demonstrably the case, (the Chinese) were recording sunspot cycles a millennium and a half before Europeans noted the existence of such blemishes on the solar orb, if every component of the parhelic system received a technical name a thousand years before Europeans began to study them, and if that key instrument of scientific revolution, the mechanical clock, began its career in early +8th-century China rather than (as is usually supposed) in +14th-century Europe, there must be something wrong with conventional ideas about the uniquely scientific genius of Western civilization.11

Yet the point here is not just a condescending recognition of the fact that "Chinamen too" were capable of rational thought. One of Needham's key working hypotheses, repeatedly corroborated by his results, is that progress in science and technology is, in the main, continuous. In other words, while particular techniques and inventions may indeed be lost, while particular theories and types of technical development will certainly be superseded, the major advances in mankind's knowledge and control of nature tend to be incorporated as stages within one cumulative line of development. Although such incorporation will necessarily be problematic at any given moment, it nevertheless seems clear from the long-range historical point of view that there is only one unitary science of nature. In this sense Needham is consciously doing more than documenting the history of Chinese science and technology, and this has been one of his major accomplishments. In the words of one recent commentator:

In the course of broadening and deepening our integral understanding of traditional Chinese culture, practically every paragraph that Needham has written has been designed to be world history, and to urge upon his readers a more humane perception of the future.13

Serious and widespread comparative study of the history of science would have been almost impracticable before the appearance of his work, but it is now inevitable.

Needham has concretely illustrated his point about the continuity of scientific advance with frequent examples of technical transmissions between distinct cultural regions - perhaps the medieval equivalent of what we nowadays refer to as "technology transfer." While scholars such as Lynn White have shown the important debt which modern science owed to the advances in medieval European science and technology, Needham has equally demonstrated that the development of European science, and production in general, was repeatedly pushed forward by incorporation of techniques generated within the civilizations of Asia and Africa in general, and within Chinese civilization in particular. A glance at Table I will give some impression of the scale and importance of the techniques which travelled westward from China to Europe in the first 17 centuries of our era. Transmission was in certain cases by direct diffusion, in other cases by stimulus diffusion; we see here 24 types of technical innovation which, to varying degrees, succeeded in revolutionizing aspects of European life. And it might be added that Table I was admittedly incomplete at the time of its publication in 1954 - since then, many more examples of westward diffusion have been adduced. On the other hand, it is interesting to consider the mechanical elements which the West was able to contribute to Chinese civilization at the time of the Jesuits (+seventeenth century): these numbered only two: the Archimedean screw and the crankshaft. In general, the results of Needham's work clearly show that from the first to the fifteenth centuries of our era the scientific and technical level of Chinese civilization was far higher than that of Europe. The technological transmissions then were heavily one-sided, toward Europe, and while mankind's mastery over nature in the long run exhibited a synthetic continuity, its progress was international and by no means confined to that region of the world in which modern science eventually emerged. Somewhat paradoxically, however, the many techniques which had been invented and developed within other, more advanced civilizations often proved to have (to employ an apt phrase) much more explosive effects in the relatively backward regions of northern and western Europe than in their countries of origin.14

TABLE 1. Transmission of mechanical and other techniques from China to the West

  Approximate lag in centuries
(a) Square-pallet chain-pump 15
(b) Edge-runner mill 13
Edge-runner mill with application of water-power 9
(c) Metallurgical blowing-engines, water-power 11
(d) Rotary fan and rotary winnowing machine 14
(e) Piston-bellows. c.14
(f) Draw-loom 4
(g) Silk-handling machinery (a form of flyer for laying thread evenly on reels appears in the +11th century, and water-power is applied to spinning mills in the +14th) 3-13
(h) Wheelbarrow 9-10
(i) Sailing-carriage 11
(j) Wagon-mill 12
(k) Efficient harness for draught animals:  
Breast-strap (postilion) 8
Collar 6
(1) Cross-bow (as an individual arm) 13
(m) Kite c.12
(n) Helicopter top (spun by cord) 14
Zoetrope (moved by ascending hot-air current) c.10
(o) Deep drilling 11
(p) Cast iron 10-12
(q) "Cardan" suspension 8- 9
(r) Segmental arch bridge 7
(s) Iron-chain suspension bridge 10-13
(t) Canal lock gates 7-17
(u) Nautical construction principles >10
(v) Stern-post rudder c. 4
(w) Gunpowder 5- 6
Gunpowder used as a war technique 4
(x) Magnetic compass (lodestone spoon) 11
Magnetic compass with needle 4
Magnetic compass used for navigation 2
(y) Paper 10
Printing (block) 6
Printing (movable type) 4
Printing (metal movable type) 1
(z) Porcelain 11-13

Source: SCC, Vol. 1, p. 242.

Generally speaking, theory was much less susceptible to diffusion than were technical innovations. Perhaps it is this fact that has at times led to the mistaken notion that the traditional non-European sciences had no body of theory (and hence were not really scientific), but were simply the accumulation of empirical techniques for dealing with nature. In fact, there were very sophisticated theoretical systems for almost all fields, ranging from astronomy to medicine, within the Islamic, Indian, and Chinese traditions. A field such as alchemy, the historical forerunner of chemistry, is particularly instructive, for its theoretical underpinnings were not only quite refined but also to an important extent diffusable: before the introduction of the idea of preparing an "elixir of life" from the Islamic world (and ultimately from China), Europe had no genuine alchemical (as distinct from aurifactive) tradition. Also, research has shown that the invention of gunpowder was the result not of any directly productive activity, but rather of systematically controlled experimentation under the guidance of traditional alchemical theory. Theory there was - but it was medieval theory, and not that characteristic of modern science. In this sense there was no qualitative difference between the traditional sciences of China or India and that of Europe before the Renaissance.

What distinguished modern science from all of the traditional sciences was its new methodology, that is, the practice of systematic experimentation to test mathematized hypotheses. In Needham's opinion, traditional science typically framed its experimentation and analyses in a system of untestable categories which were essentially regional or ethnic-bound. Modern science, on the other hand, used experimentation precisely for the purpose of axiomizing mathematically and of proving the validity of mankind's fundamental notions of reality; because of the introduction of mathematized propositions (which are universal, in the sense that they can be understood, tested, and developed by men and women of all nationalities), Needham calls modern science ecumenical.

Despite the qualitative superiority of modern science over traditional sciences, it would nevertheless seem quite incorrect to isolate this modern methodology from the specific techniques it employed and the concrete problematic it set forth. When this is recognized, it becomes clear that many of these techniques and questions were developed within the structure of traditional science. Conventionally, this is admitted when, in explaining the rise of modern science, authors refer to elements of the ancient Greek tradition which were transmitted to western Europe via the Islamic world: for example, the Euclidian model of strict geometric proof or the conflict between Ptolemaic and Aristarchian analyses of planetary motion. If we accept this line of reasoning, however, it is apparent that the qualitative leap which marked the synthesis of modern science involved much more than a "renaissance" of indigenous "European" elements. The Indian numerals, for example, represented a technical innovation without which the work of Galileo would be difficult to imagine. From India also came the conviction of the theoretical possibility of perpetual motion, transformed but evident in Newton's first law. Within mathematics itself, Descartes' synthesis of two formerly distinct disciplines, algebra and geometry, was certainly based on important contributions by medieval Islamic algebrists. In medicine, a circulation-mindedness which was ultimately Chinese can be seen in William Harvey's holistic approach to anatomy and physiology, in which the organs "might be called 'irrigation fields,' provided with a circulation which keeps every part in communication with the rest in a nutritive and chemical way.''15 Also from China came the crucial knowledge of magnetism,16 the problematics of which suffused and to a large extent inspired the early modern scientists. Here it will be instructive to let Needham make his own point:

Magnetical science was indeed an essential component of modern science. All the preparation for Peter of Maricourt, the greatest medieval student of the compass, and hence for the ideas of Gilbert and Kepler on the cosmic role of magnetism, had been Chinese. Gilbert thought that all the heavenly motions were due to the magnetic powers of the heavenly bodies, and Kepler had the idea that gravitation must be something like magnetic attraction. The tendency of bodies to fall to the ground was explained by the idea that the earth was like an enormous magnet drawing things unto itself. The conception of a parallelism between magnetism and gravity was a vitally important part of the preparation for Isaac Newton. In the Newtonian synthesis gravitation was axiomatic, one might almost say, and spread throughout space just as a magnetic force would act across space with no obvious intermediation. Thus the ancient Chinese ideas of action at a distance were a very important part of the preparation for Newton through Gilbert and Kepler.17

We can sum up what has been said so far about the results of Needham's research in the following four propositions: First, a vast body of documentable evidence confirms the importance and sophistication of traditional science and technology in pre-modern China. Second, a comparative approach to the history of science demonstrates that for the first 15 centuries of our era science and technology stood at a significantly higher level in China than in Europe; this point is borne out both by dating of inventions and by study of inter-regional diffusion. Third, transmission of technology and knowledge of natural phenomena from China to Europe attests to the cumulative nature of techno-scientific advance. Fourth, traditional China (like other pre-capitalist civilizations) formulated problems and generated techniques which represented key factors not only in the development of medieval Europe but also in the constitution of distinctively modern science.

In light of these points it is perhaps not surprising that two of the major problems to which Needham and his collaborators continue to address themselves concern differential rates of scientific and technological development: Why had China been more successful than Europe in gaining scientific knowledge and applying it for human benefit for 14 centuries? And, given this lead, why did modern science originate only in Europe?18

In response to the second question, it is useful to distinguish two orders of historical causation. The first might be termed "internal" and would be limited to scientific and technical factors alone; the second might be termed "external" and would include economic and social factors in general. An explanation in terms of internal causation would argue, for example, that modern science arose only in Europe (and failed to arise in China) because in the fifteenth century Europe developed and synthesized key advances made in all the traditional Old World civilizations, whereas China lacked a strong tradition of strict geometric proof. An explanation in terms of external causation, on the other hand, such as that of Professor B. Hessen,19 would argue that modern science arose in Europe within the context of specific economic and technical tasks which were determined by a newly emerging capitalist order of society; it was such a society that allowed the growth of modern scientific mentality. Such an externalist explanation would hence imply that modern science did not arise in China because the forces of the national bourgeoisie were too weak in relation to the feudal order. Both of these explanations indubitably are valid the problem lies in integrating them.20 For if one limits oneself to an internist explanation alone, then of course one fails to take into consideration a multitude of factors which condition the development and application of any given scientific achievement; scientific advance in turn appears as a rather arbitrary affair. On the other hand, if too much emphasis is placed on externalist causality alone, one risks forgetting that science and technology have an objectivity of their own and being blind to contradictions and continuities within the structure of science itself.

In the face of this problem, the approach embodied in Needham's work has been to investigate thoroughly the Chinese technico-scientific tradition, while consistently granting ultimate determinacy to social and economic conditions. It would seem to be the relative strength of China's bureaucratic feudalism which ultimately, despite a long period of scientific superiority and technical innovation, hindered the emergence of modern science in China. In Needham's words,

Interest in Nature was not enough, controlled experimentation was not enough, empirical induction was not enough, eclipse-prediction and calendar calculation were not enough - all of these the Chinese had. Apparently only a mercantile culture alone was able to do what agrarian bureaucratic civilization could not - bring to fusion-point the formerly separated disciplines of mathematics and nature-knowledge.21

Since China nevertheless does seem to have lacked certain elements of the ancient Greek tradition, it could conceivably be argued that Needham's option for the final determinacy of "external" factors is not entirely justified. In this respect, it might be suggested that a crucial control case might be provided by scholars working specifically on the history of science and technology of the Islamic world, a civilization which absorbed the advances of both ancient Greece and medieval China, but which generated neither a capitalist order nor modern science.

Returning to the question of the causes of China's long superiority over Europe, it is relevant first of all to note that for several centuries before our era the scientific and technical level of the Graeco-Roman world stood appreciably higher than that of China. This lead had already begun to diminish, however, by the end of the Hellenistic period, and by the beginning of our era Chinese achievements in understanding and controlling natural processes had generally begun to surpass the Graeco-Roman level. From that point, some 12 centuries passed before the gap between the Chinese and European levels again started to narrow, and it was only in the sixteenth century that European achievement in certain key sciences started to outstrip that of China.

It should be mentioned that, in approaching the two medieval traditions, a difficulty arises: the respective theoretical systems were ethnic-bound and, to a large extent, cannot be directly compared. Mediated comparison is nevertheless possible by studying the relative successes in discovering and mastering natural processes, and by appraising traditional theories in light of concepts employed at the present stage of modern science (although here it is necessary to keep in mind both that present concepts of modern science are not an absolute yardstick of truth and also that major features distinguish modern from traditional theories). At any rate, it appears from using these two types of comparison that, at the level of internal causation, the fundamental categories of traditional Chinese science were much broader and more flexible than those of Roman or medieval Europe.

This situation would seem in turn to be largely determined by social and economic conditions. In Needham's view, the Chinese form of centralized, bureaucratic feudalism was much more conducive to innovation than either the loosely knit system of the Roman Empire or the fragmented system of European baronial feudalism. For one thing, the position of the direct producers was not so precarious in China as in Europe; consequently, on the level of ideology, disdain for manual labour (and hence for technical ability) was not so all-pervasive as under the Roman Empire.

Having briefly considered a few of the questions involved in explaining the relative fecundity of traditional Chinese science and the subsequent failure to generate modern science, let us now pass on to another question which has arisen in connection with Needham's work, namely, the rate at which the various indigenous sciences were finally integrated into the scope of modern science. In approaching this problem, it will be important to keep in mind the distinction made above between the framework of traditional science and that of modern science. Needham considers the various traditional sciences as regional because their results are framed in terms of ethnically determined categories which remain vague and essentially untestable. Modern science, on the other hand, frames its experimental results in terms of quantified hypotheses which are intended to validate or invalidate theories employed at any given moment. It should perhaps be pointed out here that Needham agrees with those who maintain that the birth of modern science marked "the discovery of the process of discovery itself," that is, the conscious and systematic appropriation of the method pursued, blindly yet steadily, by the regional scientific traditions. But in contrast to the various regional traditions, modern science exhibits a tendency to become increasingly ecumenical insofar as (1) its quantified methodology of controlled experimentation upon nature can be understood, practiced, and developed by all peoples, and (2) the processes of nature encountered by all peoples can be analysed and harnessed for human benefit by means of this methodology.

Now the essence of the problem that we are considering lies in the temporal disparity between the emergence of modern scientific methodology and the realization of its ecumenical potential. At successive points in time different fields of study in Europe lost their traditional character as they were successfully subjected to modern methodology. For some time thereafter, however, the traditional sciences of non-European civilizations would continue to develop at their own pace and would preserve an important body of knowledge and technique not yet incorporated into modern science. To the extent that such a situation prevailed, any given modern science had successfully examined only those problems which had already been incorporated into European experience, and to such an extent modern science retained a regional character.

In theorizing this problem,22 Needham has pointed out the importance of distinguishing two moments: transcurrent and fusion. The "transcurrent point" designates that moment at which the European scientific and technical level surpassed that of a particular non-European civilization. In general, this moment would apparently occur simultaneously with or slightly after the successful investigation of any given field of study by means of modern methodology. The "fusion point" designates that moment at which the body of knowledge and technique belonging to a particular non-European traditional science is successfully incorporated into the modern scientific system.

Needham's attempt at specifying these moments has been restricted to the Chinese case. In mathematics, astronomy, and physics, the fusion point (1640) followed rather quickly upon the transcurrent point (1610), for there was little real difference between the material already contained in the European and Chinese traditions. When we consider botany, however, it is apparent that the lag between the two points was much longer. It is also more difficult to precisely define the transcurrent point, but this would seem to have occurred sometime between the work of Camerarius (1695) and that of Adanson (1780), probably closer to the latter. The fusion point apparently was attained around 1880, with the work of Emil Bretschneider of the Russian Ecclesiastical Mission and with that of a number of Chinese scientists trained in modern methodology. When we turn to the medical sciences in general, it is clear that the fusion point has not yet occurred, and while traditional Chinese medical remedies and techniques have already begun to be analysed by and integrated into the modern system, it will apparently take some time before neuro-physiologists thoroughly understand the processes effective in acupuncture treatment or before pharmacologists have exhausted the wealth of knowledge contained in the traditional pharmacopoeias. For the medical sciences, as for botany, there is some difficulty in pin-pointing the transcurrent point; but, if we take therapeutic success as the criterion, it should apparently be situated in the latter half of the nineteenth century. In other words, the lag between the transcurrent point and the fusion point will probably be greater than for botany. The results of this calculation are presented in Table 2.

TABLE 2. Time lags between the transcurrent point and the fusion point

 

Transcurrent point

Fusion point

Lag

Mathematics      
Astronomy 1610 1640 30
Physics      
  1700 1880 180
Botany or 1780 1880 100
Medicine 1800, 1870, not yet ?
  or 1900    

Source: Needham (1970b), p. 415.

Working from the premise that the complexity of a science is directly proportional to the metabolic content of its object (that is, that complexity increases as one proceeds from mathematics and astronomy toward biology and medicine), Needham has attempted to formulate a general principle covering the integration of the various traditional sciences into the structure of modern science.

From this one might be tempted to deduce quite tentatively a "law of oecumenogenesis" which would state that the more organic the subject matter, the higher the integrative level with which it deals, the longer will be the interval elapsing between the transcurrent point and the fusion point, as between Europe and an Asian civilization.23

The case which Needham tentatively employed to test this general principle is that of chemistry, a field which on his scale of complexity would lie between the physical sciences and botany. Here the transcurrent point and the fusion point can be calculated at approximately 1800 and 1880, respectively; the lag between the two points is greater than that for the physical sciences, but less than that for botany. And although the approach and many of the calculations remain highly problematical, it would seem that there is a prima facie case for the principle formulated. Figure I presents a graph on which the relevant data are plotted.

FIG. 1 Schematic diagram to show the roles of Europe and China in the development of ecumenical science (Source: Needham (1970b), p. 414.)

It can of course be justifiably argued that the Chinese revolution (an "external" factor in the sense described above) has exerted a powerful positive influence upon those traditional fields which remain outside the scope of modern ecumenical science. But, at this point in time, it is perhaps impossible to ascertain whether the lag expected for the integration of these fields (on the basis of the lags calculated for the fields in which fusion has already occurred) will actually be shortened, or whether, by preserving from partial or complete destruction the traditional sciences which still remain regional, the revolution has broken down. those barriers that would have hindered achieving a thorough fusion.

The present seminar is of course dedicated to examining the role of science and technology in the transformation of the contemporary world, and we are especially concerned with some of the pressing problems which today face the rapidly changing nations of Asia, Africa, and Latin America. One such problem concerns the relationship to be established between modern science and the traditional sciences of these nations. If we formulate this problem in Needham's terms, several scenarios might theoretically be distinguished, for the short term, in regard to those living regional traditions not yet incorporated into modern ecumenical science. One is a situation in which the dissemination of modern science would be obstructed (for any of a number of reasons), while the regional science of the locality continued in its purely traditional form. A second is a situation in which a modern science, still to some extent western-regional, is successfully disseminated, while the regional scientific tradition is ignored or perhaps suppressed. A third is a situation in which conditions allow modern science to be successfully disseminated, while the regional science is fostered, thoroughly collated (techniques and theory), and analysed by modern methodology. A variant of the third case is the situation in which both modern science and the regional science of a different locality are successfully introduced, while development of indigenous regional science is fostered.

In the first case, many of the ecumenical advances already made by modern science would remain unavailable to the population in question, and time and energy would be wasted as the regional science attempted to deal with problems at its own pace alone. In the second case, modern scientific methodology would face problems without the benefit of useful insights available in the regional science, and time and energy would likewise be wasted in dealing with problems for which such insights would be valid. The third case would be the optimal one for ecumenization as well as for heightening the nation's ability to deal with the natural environment efficiently.

If we examine practical attempts at the implementation of the third, optimal scenario, it seems that living regional traditions can contribute in three major ways to ecumenization and, in general, to the advancement of mankind's mastery over nature. First of all, the regional traditions include a large number of useful concrete techniques for dealing with natural processes. Many traditional herbal and mineral remedies, for example, can be uniquely effective, usually without the many side-effects induced by chemically manufactured drugs; we can refer here to the impressive work of Hakim Mohammed Said for his dedicated elucidation of this point.24 Another case can be seen in contemporary China where traditional knowledge of the signs of an imminent earthquake has been systematized and effectively used for earthquake prediction. Second, the regional traditions may preserve an important body of data upon which modern scientific research can be based, even in fields already ecumenized. If I may confine myself to the Chinese case, several examples can be cited. In fields such as astronomy and meteorology, in which prediction is based on long range trends, the traditional records can be of immense utility. And in the medical sciences, which have not yet been fully ecumenized, the traditional pharmacopoeiae again provide a wealth of material upon which modern experimentation can be based. Third, the regional traditions can open new horizons for modern scientific research by demonstrating practical success in mastering processes which modern science has not yet or not sufficiently subjected to analysis. A striking case here is the extent to which successful treatment with acupuncture has stimulated international neuro-physiological research, for example, on the nervous structure of the outer ear and on the mechanisms of pain inhibition.25

I would suggest that these three aspects of the current ecumenization of science demonstrate on a practical level that which Joseph Needham and many other historians of science have been illustrating on the long-range historical scale: namely, that there is a temporal and qualitative distinction, but not an absolute one, between modern ecumenical science and the various regional-traditional sciences. If I may paraphrase a famous maxim, i should say that there is no "Chinese wall" separating the new science from the old. Between the two, it might be said, there lies a new, more productive approach to nature, a more thoroughgoing methodology. If we consider the relationship in a correct historical perspective, it can be shown that modern science arose upon the basis of a synthesis of the various traditional sciences. But, like them, it continued - and to a constantly diminishing extent continues - to retain a regional character. This is a point watch Is being demonstrated in practice, irrespective of whether or not Needham's tentative formulation about the rate of ecumenization proves valid. To the extent that a living regional tradition is ignored or perhaps destroyed, this regional character of modern science is not overcome; it is only perpetuated. Personally, I agree that Needham is correct in speaking of the long-term continuity of scientific advance. In the short term, however, it is important to understand the validity of "walking on two legs" by integrating modern and regional science.

It was a usual observation of Boyle, the English chemist, "That if every artist would but discover what new observations occurred to him in the exercise of his trade, philosophy would thence gain innumerable improvements." It may be observed, with still greater justice, that if the useful information of every country was gleaned by a judicious observer, the advantages would be inestimable....

To send out a traveller properly qualified for these purposes might be an object of national concern; it would in some measure repair the breaches made by ambition; and might show that there were still some who boasted a greater name than that of patriots, who professed themselves lovers of men.

Oliver Goldsmith, The Citizen of the World./Letter CVIII.


Contents - Previous - Next