This is the old United Nations University website. Visit the new site at http://unu.edu
3. Main papers and discussions
Model development for integrated utilization of
land-water interactive resource systems in the coastal part of
the citarum watershed
Environmental problems related to the coastal
dynamics of humid tropical deltas
Morphogenesis of the northern coastal plain of
west Java between Cirebon and Jakarta: Its implications for
coastal zone management
The oceanographic features of the coastal region
between Jakarta and Cirebon
Socio-economic studies in java in the context of
a coastal resources evaluation
The mangrove ecosystem of the northern coast of
west Java
The marine fishery resources of the north coast
of west Java
The interpretability of landsat colour composite
images for a geographical study of the northern coastal zone of
west Java
Water-quality assessement of the cimanuk
watershed
Chairul Muluk, Ngadiono, Koesoebiono, and Soeratno Partoatmodjo
Introduction
A watershed is a natural ecosystem which is separated topographically from adjacent watersheds. As a system the watershed may be divided into three sub-systems, namely the upland, lowland, and coastal sub-systems which have the following major functions:
Being connected, the condition of the resources in the coastal sub-system is affected by the resource utilization decisions made in the two upper sub-systems of the watershed Furthermore, resource utilization in the coastal sub-system is affected not only by the influx of freshwater channelled through both natural and man-made channel systems into the area, but also by the marine system.
The boundary between the upland and the lowland subsystems is the "reservoir belt," which is a line connecting the lowest location above sea-level potential for reservoir constructions. The boundary between the lower and the coastal sub-systems is difficult to identify and is assumed to be the line connecting the locations potentially affected by salt intrusion.
Based on the land-use in the coastal part of the Citarum watershed, four agricultural production systems, namely food and cash crop agriculture, aquaculture, animal husbandry, and forestry, can be identified. These production systems can be termed the agro-ecosystem in which land-water interaction plays an important role. Response of the agro-ecosystem is affected by the state of interaction among these four components. The output of the agro-ecosystem in the coastal zone is a result of the interaction of the agro-ecosystem, human resources (social, cultural conditions", and the technological and economic conditions prevailing in the area.
Therefore, determining strategies to optimize resource use aimed at providing the majority of the people with basic necessities beyond their minimal sustenance level involves manipulating the agro-ecosystem, human resources, and the technological and capital inputs.
Theoretical Framework
In developing the coastal part of the Citarum watershed it is imperative that integrated development of three components, i.e., the agro ecosystem, human resources, and capital and technological aspects, should be achieved.
Agro-ecosystem
The agro-ecosystem is the agricultural production system and comprises four components: food and cash agriculture, aquaculture, animal husbandry, and forestry. Among the components, the interaction through land is a matter of competition for space, while within each component the landwater interaction may affect, adversely or Positively, its production process. However, among the components water acts as an integrator due to its ability to flow from one to the other. Besides these interactions, the possibility exists for inter-component man induced interactions (Fig. 2). Figure 1 shows the theoretically derived interactions among components.
Human resources
Human resources are the part of a society which has the potential or actual capability to manage available natural resources within the system to provide sufficient products and conditions to sustain or improve the livelihood of that society. The efficiency or productivity of the human resources in achieving these objectives is determined by three major characteristics, namely, the quality and quantity of the human resources, and the social institutions. Improvements in quality may be achieved through training and education, nutrition, etc. Creation of better employment opportunities and wages will increase the productivity of available human resources, while the social institutions can promote the capability to innovate and to participate in supporting development programmes (Fig. 3). Ultimately, manipulation of these activities creates better chances of achieving improvement in the quality of life and the distribution of income per capita.
FIG. 3. Development strategies in human resources (Hidayat 1979, modified)
Technology and capital
Technology applied to and capital needed in resource utilization should be relevant to conditions of the existing human and natural resources, should increase the efficiency of the activities to obtain beneficial outputs, and should minimize the harmful or non-utilizable outputs of each process. Both technology and capital may already exist as a part of the human resources or may be introduced into the system.
Interaction of the major components
Interactions of the three major components related to integrated development of resource utilization in the coastal part of the Citarum watershed are shown in Figure 4. This figure describes the activities or decisions in resource (agroecosystem) utilization or exploitation in obtaining products and making them available directly or indirectly to the society. It also describes the decisions or activities needed to improve the productivity of the human resource and the capability to sustain or improve the resource base, which will provide not only the society's needs but also improved environmental conditions.
These decisions or activities require a certain level of input of available or introduced technology and capital. The result of interactions occurring in the system forms the output of the systems and this will affect other systems
Management strategies
Based on the foregoing discussions it can be stated that development strategies are aimed at improving conditions of the coastal part of the Citarum watershed. Indicators of improved conditions of the coastal part of the Citarum watershed are among others increased production and minimized waste of the agro-ecosystem, and improved social and economic levels of the society.
Therefore, the development strategies are decisions or activities which will simultaneously increase production and improve the social and ecological conditions. These decisions are among others exploitation, handling, processing and recycling, distribution, regeneration, rehabilitation, conservation, education, technology and capital, protection, and aesthetics (see Fig. 4). These expressions may be formulated as follows:
maximize:
St = St-1 + ft (St-1, dt)
subject to
dt = decisions or activities,
(social development),
(ecological development),
where
St = production in period t
ft = function in period t
dt = (d1, d2,...,dn)
= vector of decision variables
Description of the Coastal Part of the Citarum Watershed
Introduction
The coastal part of the Citarum watershed covers an area around 351 km˛. It forms a relatively flat area, with slopes of less than 5 per cent, the highest elevation being 2 m above sea level. Ninety-five per cent of the area has poor drainage and low water-infiltration capability. The land capability for crop production is identified as good, and the prevailing soil type (96 per cent) is alluvial.
The distribution for agriculture-related land-use amounts to:
agriculture: | 17.5 % |
forest: | 46.6 % |
aquaculture: | 15.5 % |
swamps: | 17.6 % |
The remaining ±3 per cent is the area used for human settlements.
Based on Oldeman's classification the agroclimatic type prevailing in the area is type E, with one to two wet months (rainfall greater than 200 mm) (Fig. 5). The average annual rainfall is 1,300 mm.
The water available in the area is used not only for agricultural purposes (in the broadest sense of the word) but also for domestic purposes. Aside from rainfall, the water supply is provided through channel systems from the Citarum River (Fig. 6). Specifically in the case of coastal aquaculture, sea water is provided through natural and manmade channel systems using tides as a driving factor (Fig. 7).
The population density in the area is 360 persons/km˛, and the population (1975) is 126,404, out of which 61 per cent forms the potential labour force, composed of 44 per cent males and 56 per cent females. The average annual population increase rate, estimated from 1971 to 1975, is 2.6 per cent.
Formal education is offered through general and religious primary schools. The latter are involved not only with religious and general education but also with vocational education relevant to the conditions in the area. Children can enter school from age six, but only 15 per cent of those eligible receive primary education. Rural social institutions such as village cooperative units are involved in the capital raising and technology dissemination necessary for resource exploitation, processing, and distribution activities, and also for sustaining and improving the resource base and the environmental conditions.
In general it can be stated that only in the field of agriculture, through government programmes, is the application of improved technology (e.g., the use of pesticides, fertilizers, and high-yielding and pest-resistant varieties) relatively intensive. This is also true in the case of making available the capital needed to obtain the technology. However, traditional technology and capital formation institutions are already rooted in the society of the area and should be considered in development.
The agro-ecosystems
1. Agriculture
Rice fields, of which 68 per cent are irrigated, constitute 80 per cent of the agricultural land of the area. The land capability of the area is identified to be good for the development of cash and food-crop agriculture. However, its topography, soil conditions, and elevation cause problems in its development. Sedimentation of drainage canals causes floods during the rainy season, and makes this area unsuitable for agriculture in the following season. The area is also potentially exposed to sodium hazards. However, improvement of channels, both irrigation and drainage channels, will increase the ricefield area. In addition, the use of fertilizers and pesticides increases the annual rice production per ha from 3.3 to 4.0 T. However, the poor infrastructure in the area limits the distribution of pesticides and fertilizers. Only 24 per cent of the farmers are exposed to these inputs.
Co-operative units and other institutions involved in processing and distribution of products are also involved in providing capital, pesticides, and fertilizers to the farmers.
FIG. 5. Climatic types in the downstream part of the Citarum watershed
FIG. 6. Kabupaten (County) Karawang irrigation network (1977)
FIG. 7. Types of potential aquatic resource utilization in Kabupaten (County) Karawang (1977)
2. Aquaculture
The condition of the area available for aquaculture only permits the development of brackish-water aquaculture, which is also termed tambak culture. The greater part (60 per cent) of the tambak culture is executed with the tumpangsari method in the mangrove forest.
Areas exposed to floods which become unsuitable for agriculture and recently accreted areas are potential areas for tambak culture. However, where improvements of irrigation and drainage channels are made, increasing the rice-field area and also areas exposed to marine erosion, the area of the tambak tends to decrease. The average annual production of the tambak ranges from 130 kg/ha to 200 kg/ha. This low productivity reflects the simple, traditional technology used and the insufficiency of both capital for proper care and seeds for the production process.
3 Animal husbandry
The animal husbandry in the area involves the raising of cattle, sheep, goats, pigs, and poultry (chickens and ducks). Large animals with a density of 0.3 head/ha are mainly used as draught animals in soil preparation. Piggeries are restricted to farmers of Chinese origin, and wastes from this activity are used in dry-land food-crop cultivation. Waste and by-products from the agriculture components form the principal feed for the animals raised.
Water supplies available in the area may be unsuitable for this production process, especially during dry spells. Vaccination and improvement of breed are conducted to increase the productivity of poultry and cattle.
4. Forestry
Mangrove forest forms the principal forest of the area, and it provides energy in the form of firewood for the inhabitants in the surrounding area. In mangrove areas land accretion is promoted and becomes an area of conflict of interest. The local inhabitants tend to transform this area into tambak, while the Forestry Service and the local government tend to preserve the area as a forest. However, there are concessions made to the local inhabitants to practice aquaculture using the tumpangsari method.
Programmes to rehabilitate and create a green belt along the shore have been established. Difficulties in implementing these programmes are caused by conflict of interest and ecological conditions inherent in certain localities (e.g., marine erosion caused by strong sea currents and wave action).
Alternative Decisions in Coastal Area Development
At the present stage of the study, the data base constructed from primary and secondary sources is not large enough for the important decisions on integrated utilization of the area's resources that are aimed at increasing production and improving the social and ecological conditions of the area. Therefore, the existing conditions as stated in the foregoing section and the reasoning behind the qualitative models expressed in Figures 1, 2, 3, and 4 were taken as the basis for the formulation of hypothetical decisions leading to the stated objectives.
These decisions are categorized as follows:
1. Decisions within the agro-ecosystem to increase production This category includes those decisions that are based on the interactions as shown in Figure 2. Thus, examples of decisions are
2. Decisions related to exploitation e.g.
3. Decisions related to handling e.g.
4. Decisions related to processing e.g.
5. Decisions related to distribution e.g.
6. Decisions within the society
Within this category are decisions aimed at improvement of ideas, activity, and productivity of human resources through
7. Decisions related to regeneration, rehabilitation, and conservation of the agro-ecosystem e.g.
8. Decisions related to recycling of supplementary outputs e.g.
9. Decisions related to protection and aesthetics e.g.
10. Decisions for the mobilization of technology, capital, and human resources from outside the coastal sub-system e.g.
Additional field work and data collection are necessary to
Based on this information a set of decision alternatives can be formulated as a basis for developing a model for integrated resource utilization in the area. This model should become the guideline in resource utilization which minimizes wastes and maximizes production for each time span decided, and within existing constraints.
References
Adiramta, E. R.;Sunarto;Said Rusli; and E, Kusumah 1971 - 1972. Penggunaan teknologi baru oleh petani padi di Kabupaten Karawang. Laporan penelitian kerjasama Badan Pengendali Binas Nasional den Institut Pertanian Bogor.
Adiramta, E. R.; A. Gafur; Sujadi; and Hatomi 1971-1972. Menuju kearah diversifikasi usaha dalam Usahatani, suatu pendekatan dalam model pembangunan pertanian Kabupaten Karawang. Kerjasama Direktorat Perentjanaan den Pengembangan Direktorat Djendral Pertanian den Institut Pertanian Bogor.
Anwar, A., 1969. Wilayah potensi pertanian den sumber-sumber lain Daerah Kabupaten Karawang. Laporan Survey sebagai Landasan Penyusunan Pola Dasar Pembangunan Daerah Kabupaten Karawang. Kerjasama Karawang - Institut Pertanian Bogor.
__________1971. Karawang potensi pertanian dalam pembangunan regional. Proyek Kerjasama Pemerintah Daerah Kabupaten Karawang- IPB.
Azzaino, Z., and Soeharnis 1969. Wilayah potensi pertanian den sumber-sumber lain Daerah Kabupaten Karawang. Laporan Survey sebagai Landasan Penyusunan Pola Dasar Pembangunan Daerah Kabupaten Karawang. Kerjasama Karawang-Institut Pertanian Bogor.
__________1970. Faktor-faktor strategic jang harus diperhatikan dalam mentjiptakan pembangunan pertanian jang progresif di Lokalita Wadas dalam hubungan dengan perentjanean pembangunan Kabupaten Karawang. Suatu pendekatan decision making process dalam Lokalita. Proyek kerjasama Pemerintah Daerah Kabapaten Karawang-IPB.
Birowo, A.T., and A. Gafur 1973. Peranan pertanian dalam pembangunan ekonomi daerah di Kabapaten Karawang. Laporan penelitian kerjasama Direktorat Jendral Pertanian dengan Institut Pertanian Bogor.
Muluk, C.; S. T. H. Wardayo; Koesoebiono; E. Manan; D. R. O. Monintja; M. l. Effendie; and S. Sosromarsono 1976. Studi Penentuan Kriteria kualitas lingkungan perairan den biotik. Panitia Perumus den Rencana Kerja Bagi Pemerintah di Bidang Pengembangan Lingkungan Hidup. Proyek Pengelolaan Sumber- Sumber Alam den Lingkungan Hidup,
Ruddle,K., and T. B. Grandstaff 1978. The international potential of traditional resource systems in marginal areas. Technological Forecasting and Social Change 11: 119 - 131. Elsevier, New York.
Soewardi, B.; S. Ngadiono; Partoatmodjo; and M. Soekandar 1978. Studi pembinaan model pengelolaan wilayah Daerah Aliran Sungai. Buku I den Buku II. Panitia Perumus den Rencana Kerja Bagi Pemerintah di Bidang Pengembangan Lingkungan Hidup. Proyek Pengelolaan Sumber-Sumber Alam den Lingkungan Hidup.
Soewardi,B., and Ngadiono 1979. Watershed management: an analysis through modelling. Paper presented at the Programmatic
Workshop on Agro-Ecosystems in the Framework of Watershed Management, 18 - 20 June 1979, Bogor, Indonesia. Center for Natural Resource Management and Environmental Studies Bogor Agricultural University.
Sumawidjaja, K.; C. Muluk; T. H. Supomo; Wardoyo; Koesoebiono; Daniel R. O. Monintja; and G. W. Atmadja 1977. Survai ekologi perikanan Daerah Aliran Sungai: aspek-aspek penyelamatan perikanan di perairan umum. Bagian Il: Daerah Aliran Sungai Citarum. Proyek Penyelamatan Perairan Umum Direktorat Jendral Perikanan. Departemen Pertanian-Institut Pertanian Bogor.
Discussion
Burgers: Please explain the use and ownership of these resources.
Muluk: The use of water for aquaculture purposes is regulated by water resources regulations issued since the Dutch colonial period. Although disposal of waste into the water system is prohibited, we actually have no law yet. Piggeries cannot be located near the water system area due to religious reasons. On the ownership system we have land reform, which stated that one person cannot own more than 2 ha of land, but the water is public property. As you know, the accretion rate of land is very fast, particularly in the north coast of Java. The question is who owns that new land, the government or the people?
Hehuwat: Accretion is rapid, and no cadastral map exists, but strictly speaking, the new land up to a certain distance inland from the coastline is owned by the government. If we apply strictly the government law on the new area, then there will be a conflict with the local people.
Bird: Please explain the tumpangsari method.
Muluk: It is a system where the mangrove forest and aquaculture can be in the same area, so that two crops are cultivated from the same land; a kind of multiple cropping.
Environmental problems related to the coastal dynamics of humid tropical deltas
Eric C. F. Bird
Deltas are numerous and extensive on coasts with humid tropical (Koppen Am) climates, partly because the high runoff resulting from heavy rainfall supplies rivers with large quantities of sediment derived from the outcrops of deeply weathered rock formations that have developed under hot, wet conditions in the hinterlands, and partly because the prevalence of low to moderate wind energy, due to relatively weak wind action over coastal waters, has permitted the growth and persistence of these protruding depositional landforms. Studies have been made of the geomorphological, hydrological, and ecological features of a number of humid tropical-zone deltas (e.g., Unesco 1966), with Particular attention to the changes, both natural and man-induced, that take place on and around them (Verstappen 1964). The present paper reviews the coastal dynamics of humid tropical deltas in terms of environmental problems that have arisen in the course of man's development and utilization of these areas. It provides a basis for investigating these problems on the extensive deltaic coast east of Jakarta, where deposition from a number of rivers, including the Citarum, the Cipunegara, and the Cimanuk, with headwaters in the uplifted steep and high ranges to the south, has built up a broad deltaic lowland, with a seaward margin consisting mainly of swampy terrain fringed by narrow sandy beaches (Bird and Ongkosongo 1980).
Such deltas attained their present form during and since the Holocene marine transgression, which began about 20,000 years ago, when the sea was at least 100 m below its present level, and came to an end about 6,000 years ago with the attainment of the present stillstand. On humid tropical coasts, rapid and abundant fluvial deposition has generally offset the effects of submergence which elsewhere persist in the form of drowned valley mouths and coastal embayments. Drilling has shown that deltas are deep wedges of sediment, largely of fluvial origin, but with intercalations of marine sediment, mainly fluvial deposits reworked by waves and currents in the nearshore zone. The stratigraphy of a delta usually indicates a history of gradual or intermittent subsidence, evidently a localized isostatic response of the earth's crust to the accumulation of a large sedimentary load. Continuing subsidence, perhaps augmented by a slight rise of the world sea level, explains why sectors of deltas that are not still receiving sediment, either of fluvial origin or after marine reworking, commonly show active shoreline erosion. The internal structure and stratigraphy of a delta is of much scientific interest, and of economic importance in terms of the disposition of water-bearing, oil-bearing, or mineral-bearing formations; but in terms of environmental problems an understanding of the processes that are changing the delta surface and its seaward margins is of more practical value.
Delta Dynamics
Deltas are low-lying terrain, with gentle transverse gradients (a few centimetres per kilometre). River channels often divide into distributaries as they approach the sea, and distributary channels are apt to be variable in form and dimensions, waxing and waning through time, and subject to diversion and closure, especially at their mouths. The rivers carry water and sediment to the deltaic shore and out into the adjacent sea, the flow being related partly to fluvial discharge and partly to the effects of tidal action entering the river mouth and of waves and currents in the nearshore zone. In addition, the delta shoreline may be interrupted by tidal creeks, which are often relics of earlier distributary mouths cut off by deposition upstream. These inlets are subject to the regular ebb and flow of tidal sea water, but receive fluvial runoff and sediment occasionally during episodes when the delta is inundated by major river flooding.
Sediment delivered by rivers is usually a mixture of sand, silt, and clay; it is carried to the river mouths, especially during floods, and deposited in the form of channel shoals and offshore bars. The sand fraction is sorted out by wave action and distributed along the shore as beaches and spits by waves and associated currents. This longshore drifting is responsible for the deflection, and sometimes the closure, of tidal creeks along the delta margin. Nearshore waters are frequently discoloured by the discharged fluvial load of suspended silt and clay, which gradually settles in calm water environments offshore, or in inlets and embayments along the coast, where it builds up tidal mudflats colonized by mangroves.
The pattern of sedimentation is influenced by the positions of river mouths. Distributaries carrying a substantial sediment load develop lobes at their mouths Changes in the position of river mouths occur both naturally, as the result of deflection along the shore or diversion upstream, and as the result of engineering works. New deltaic lobes are initiated at the diverted or deflected outlet, and earlier lobes may then start to erode away. The deltaic shoreline is thus dynamic, prograding on sectors that are directly or indirectly supplied with sediment, and being cut back on sectors where the sediment supply has diminished. Studies of historical maps and charts, and successions of air photographs, in comparison with existing outlines, show the patterns of gain and loss along deltaic shorelines in the past, and can be used as a means of predicting where future changes are likely to occur.
The factors that influence delta dynamics may be summarized as follows:
Environmental Problems
These geomorphological, hydrological, and ecological processes give rise to a number of problems for the people who develop and utilize land and water resources on deltaic coasts. In the humid tropics, most deltas have been intensively modified to sustain large human populations, and the problems of natural or man-induced coastal change are often severe. Some key problems are listed:
Conclusion
There is thus a wide range of environmental problems related to the coastal dynamics of humid tropical deltas dynamics which, in turn, are the outcome of an interacting system of geomorphological, hydrological, and ecological processes. This system has been greatly modified by man's activities in these densely populated and intensively utilized deltaic regions. An understanding of the dynamics of humid tropical deltas is necessary as a basis for coastal management and land use strategies designed to maintain the productivity of these areas, and to provide the information needed to solve the environmental problems that have arisen. This Programmatic Workshop and Training Course aims to promote this understanding, and to initiate research on the dynamics of the coastal fringe of a Javanese delta.
References
Bird, E. C. P., and O. S. R. Ongkosongo Environmental changes on the coasts of Indonesia. UN University. (In preparation.)
Unesco 1966. Scientific problems of humid tropical zone deltas and their implications. Proceedings of the Dacca Symposium, p. 422.
Verstappen, H, T. 1964. Geomorphology in delta studies. 1. T. C. Publications, B 24, Delft, p. 24.
Discussion
Collier: On several ports of the Java deltas, tambaks are being constructed on the mudflats as soon as they accumulate, before they are colonized by vegetation. What effects could this have on delta dynamics?
Bird: Unvegetated delta shores are less stable than those with a mangrove fringe. I would expect these tambaks to suffer storm damage, and to be readily eroded away if there is a change in river mouth positions.